Critical Storage Alert - GitLab Action Required
The storage used on GitLab is growing at a alarming pace, we are running out of space!
We urge all user to:
\- delete old or unused docker images
\- delete old artifacts (you can use this tool: https://gitlab.fbk.eu/fbk-scripts/deleteartifacts)
\- set up a cleanup policy for your images (instructions: https://docs.gitlab.com/ee/user/packages/container_registry/reduce_container_registry_storage.html#cleanup-policy)
Failure to act on these points poses a high risk of interrupting the service offered to all users.
If you need help, please contact help-it@fbk.eu
@@ -30,12 +30,12 @@ Write *data_loading_train* function for train inside *data_processing/data_loadi
...
@@ -30,12 +30,12 @@ Write *data_loading_train* function for train inside *data_processing/data_loadi
Write *compute_loss* function inside *train.py* file.
Write *compute_loss* function inside *train.py* file.
#### Step 7 - Add optimizer
#### Step 7 - Add optimizer
Add an optimizer in *train* function inside *run.py* file (you can use [configuration file](https://gitlab.fbk.eu/dsip/templates/dl_setup/-/wikis/Configuration-file) to load lr and other hyper-params).
Add an optimizer in *train* function inside *run.py* file (you can use [configuration file](Configuration-file) to load lr and other hyper-params).
#### Step 8 (Optional) - Add scheduler and early_stopper
#### Step 8 (Optional) - Add scheduler and early_stopper
Change the value of the scheduler in *train* function inside *run.py* from None to a scheduler you want. If you are not going to use a scheduler leave scheduler to None.
Change the value of the scheduler in *train* function inside *run.py* from None to a scheduler you want. If you are not going to use a scheduler leave scheduler to None.
If you want to use [early stopper](https://gitlab.fbk.eu/dsip/templates/dl_setup/-/wikis/Pytorch) you need to write 3 config inside [configuration file](https://gitlab.fbk.eu/dsip/templates/dl_setup/-/wikis/Configuration-file):
If you want to use [early stopper](Pytorch) you need to write 3 config inside [configuration file](https://gitlab.fbk.eu/dsip/templates/dl_setup/-/wikis/Configuration-file):
* in *environment* section set *use_early_stopper* to true;
* in *environment* section set *use_early_stopper* to true;
* in *earlystopping* section set *patience* to a value you want.
* in *earlystopping* section set *patience* to a value you want.