#!/bin/bash # Example script for the INF pipeline CORES=12 OUTFOLDER=results DATAFOLDER=data DATASET=tcga_aml LAYER1=gene LAYER2=meth LAYER3=mirna TARGET=OS MODEL=randomForest N_SPLITS_START=0 N_SPLITS_END=10 RANDOM_LABELS=false snakefile=Snakefile_full if [[ $1 = accelerated ]] then snakefile=Snakefile_accelerated fi # go! for (( i=$N_SPLITS_START; i<$N_SPLITS_END; i++ )) do snakemake -s $snakefile --cores $CORES --config datafolder=$DATAFOLDER outfolder=$OUTFOLDER dataset=$DATASET target=$TARGET layer1=$LAYER1 layer2=$LAYER2 layer3=$LAYER3 model=$MODEL random=$RANDOM_LABELS split_id=$i -p --dryrun done if [ $RANDOM_LABELS = true ] then TARGET+='_random' fi for MODE in juxt rSNF rSNFi single do python postprocessing/compute_all_metrics.py --outfolder $OUTFOLDER --dataset $DATASET --target $TARGET --layers $LAYER1 $LAYER2 $LAYER3 --model $MODEL --n_splits_end $N_SPLITS_END --n_splits_start $N_SPLITS_START --mode $MODE done for MODE in juxt rSNF do python postprocessing/borda_global_juxt_rSNF.py --datafolder $DATAFOLDER --outfolder $OUTFOLDER --dataset $DATASET --target $TARGET --layers $LAYER1 $LAYER2 $LAYER3 --model $MODEL --n_splits_end $N_SPLITS_END --n_splits_start $N_SPLITS_START --mode $MODE done python postprocessing/borda_global_rSNFi.py --datafolder $DATAFOLDER --outfolder $OUTFOLDER --dataset $DATASET --target $TARGET --layers $LAYER1 $LAYER2 $LAYER3 --model $MODEL --n_splits_end $N_SPLITS_END --n_splits_start $N_SPLITS_START --mode rSNFi